Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(16): 8940-8951, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32292965

RESUMO

The reactions between Ni+(2D) and O3, O2, N2, CO2 and H2O were studied at 294 K using the pulsed laser ablation at 532 nm of a nickel metal target in a fast flow tube, with mass spectrometric detection of Ni+ and NiO+. The rate coefficient for the reaction of Ni+ with O3 is k(294 K) = (9.7 ± 2.1) × 10-10 cm3 molecule-1 s-1; the reaction proceeds at the ion-permanent dipole enhanced Langevin capture rate with a predicted T-0.16 dependence. Electronic structure theory calculations were combined with Rice-Ramsperger-Kassel-Markus theory to extrapolate the measured recombination rate coefficients to the temperature and pressure conditions of planetary upper atmospheres. The following low-pressure limiting rate coefficients were obtained for T = 120-400 K and He bath gas (in cm6 molecule-2 s-1, uncertainty ±σ at 180 K): log10(k, Ni+ + N2) = -27.5009 + 1.0667log10(T) - 0.74741(log10(T))2, σ = 29%; log10(k, Ni+ + O2) = -27.8098 + 1.3065log10(T) - 0.81136(log10(T))2, σ = 32%; log10(k, Ni+ + CO2) = -29.805 + 4.2282log10(T) - 1.4303(log10(T))2, σ = 28%; log10(k, Ni+ + H2O) = -24.318 + 0.20448log10(T) - 0.66676(log10(T))2, σ = 28%). Other rate coefficients measured (at 294 K, in cm3 molecule-1 s-1) were: k(NiO+ + O) = (1.7 ± 1.2) × 10-10; k(NiO+ + CO) = (7.4 ± 1.3) × 10-11; k(NiO+ + O3) = (2.7 ± 1.0) × 10-10 with (29 ± 21)% forming Ni+ as opposed to NiO2+; k(NiO2+ + O3) = (2.9 ± 1.4) × 10-10, with (16 ± 9)% forming NiO+ as opposed to ONiO2+; and k(Ni+·N2 + O) = (7 ± 4) × 10-12. The chemistry of Ni+ and NiO+ in the upper atmospheres of Earth and Mars is then discussed.

2.
Phys Chem Chem Phys ; 21(26): 14080-14089, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30680383

RESUMO

The reactions between Al+(31S) and O3, O2, N2, CO2 and H2O were studied using the pulsed laser ablation at 532 nm of an aluminium metal target in a fast flow tube, with mass spectrometric detection of Al+ and AlO+. The rate coefficient for the reaction of Al+ with O3 is k(293 K) = (1.4 ± 0.1) × 10-9 cm3 molecule-1 s-1; the reaction proceeds at the ion-dipole enhanced Langevin capture frequency with a predicted T-0.16 dependence. For the recombination reactions, electronic structure theory calculations were combined with Rice-Ramsperger-Kassel-Markus theory to extrapolate the measured rate coefficients to the temperature and pressure conditions of planetary ionospheres. The following low-pressure limiting rate coefficients were obtained for T = 120-400 K and He bath gas (in cm6 molecule-2 s-1, uncertainty ±σ at 180 K): log10(k, Al+ + N2) = -27.9739 + 0.05036 log10(T) - 0.60987(log10(T))2, σ = 12%; log10(k, Al+ + CO2) = -33.6387 + 7.0522 log10(T) - 2.1467(log10(T))2, σ =13%; log10(k, Al+ + H2O) = -24.7835 + 0.018833 log10(T) - 0.6436(log10(T))2, σ = 27%. The Al+ + O2 reaction was not observed, consistent with a D°(Al+-O2) bond strength of only 12 kJ mol-1. Two reactions of AlO+ were also studied: k(AlO+ + O3, 293 K) = (1.3 ± 0.6) × 10-9 cm3 molecule-1 s-1, with (63 ± 9)% forming Al+ as opposed to OAlO+; and k(AlO+ + H2O, 293 K) = (9 ± 4) × 10-10 cm3 molecule-1 s-1. The chemistry of Al+ in the ionospheres of Earth and Mars is then discussed.

3.
Environ Sci Technol ; 48(18): 10993-1001, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25184338

RESUMO

Fine aerosol particles in the urban areas of Shanghai and Los Angeles were collected on days that were characterized by their stagnant air and high organic aerosol concentrations. They were analyzed by nanospray-desorption electrospray ionization mass spectrometry with high mass resolution (m/Δm = 100,000). Solvent mixtures of acetonitrile and water and acetonitrile and toluene were used to extract and ionize polar and nonpolar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. A majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates that were detected at two locations have distinctly different molecular characteristics. Specifically, the organosulfates in the Los Angeles sample were dominated by biogenic products, while the organosulfates of a yet unknown origin found in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degrees of oxidation and unsaturation. The use of the acetonitrile and toluene solvent facilitated the observation of this type of organosulfates, which suggests that they could have been missed in previous studies that relied on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the uncommon organosulfates suggest that they may act as surfactants and plausibly affect the surface tension and hygroscopicity of atmospheric particles. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in the liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Cidades , Monitoramento Ambiental/estatística & dados numéricos , Sulfatos/análise , Acetonitrilas , Carbono/análise , China , Monitoramento Ambiental/métodos , Los Angeles , Espectrometria de Massas por Ionização por Electrospray/métodos , Tolueno , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
4.
Phys Chem Chem Phys ; 16(31): 16677-83, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24998384

RESUMO

The time-dependent growth and shrinkage of aqueous aerosol particles trapped in an electrodynamic balance exposed to changes in relative humidity (RH) depend on the translational diffusion coefficient of water (DH2O). Resonances in the Mie scattering patterns of the illuminated micrometre-sized droplets are used to follow the compositional evolution through stepwise changes in RH. Under conditions where the diffusion of water molecules becomes sufficiently slow, e.g. in the highly viscous or even glassy regime, the concentration and temperature dependent values of DH2O can be determined iteratively by comparing the observed shifts in the Mie resonant wavelengths with predicted shifts from a diffusion model of a multi-layered sphere. It is shown that condensation and evaporation of water vapour from or to highly viscous or glassy droplets follow different kinetic regimes, a result that is consistent with previous studies of adsorption and desorption on glassy surfaces.

5.
J Phys Chem A ; 116(40): 9954-68, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22974307

RESUMO

Atmospheric aerosol particles can exhibit liquid solution concentrations supersaturated with respect to the dissolved organic and inorganic species and supercooled with respect to ice. In this study, thermodynamic and optical properties of sub- and supersaturated aqueous solutions of atmospheric interest are presented. The density, refractive index, water activity, ice melting temperatures, and homogeneous ice freezing temperatures of binary aqueous solutions containing L(+)-tartaric acid, tannic acid, and levoglucosan and ternary aqueous solutions containing levoglucosan and one of the salts NH(4)HSO(4), (NH(4))(2)SO(4), and NH(4)NO(3) have been measured in the supersaturated concentration range for the first time. In addition, the density and refractive index of binary aqueous citric acid and raffinose solutions and the glass transition temperatures of binary aqueous L(+)-tartaric acid and levoglucosan solutions have been measured. The data presented here are derived from experiments on single levitated microdroplets and bulk solutions and should find application in thermodynamic and atmospheric aerosol models as well as in food science applications.


Assuntos
Atmosfera/química , Termodinâmica , Aerossóis/química , Sulfato de Amônio/química , Glucose/análogos & derivados , Glucose/química , Nitratos/química , Fenômenos Ópticos , Material Particulado , Taninos/química , Tartaratos/química , Água/química
6.
Proc Natl Acad Sci U S A ; 109(29): 11613-8, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753520

RESUMO

Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.


Assuntos
Aerossóis/química , Atmosfera , Modelos Químicos , Transição de Fase , Água/química , Cinética , Tamanho da Partícula , Cloreto de Sódio/química , Análise Espectral Raman , Sacarose/química , Viscosidade
7.
Anal Chem ; 82(5): 2048-58, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20146449

RESUMO

Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of organic aerosol (OA) samples collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. In this study, DESI-MS and tandem mass spectrometry experiments (MS/MS) were used to examine chemical aging of SOA produced by the ozonolysis of limonene (LSOA) in the presence of gaseous ammonia. Exposure of LSOA to ammonia resulted in measurable changes in the optical properties of the sample observed using ultraviolet (UV)-visible spectroscopy. High-resolution DESI-MS analysis demonstrated that chemical aging results in formation of highly conjugated nitrogen-containing species that are most likely responsible for light-absorbing properties of the aged LSOA. Detailed analysis of the experimental data allowed us to identify several key aging reactions, including the transformation of carbonyls to imines, intramolecular dimerization of imines with other carbonyl compounds in SOA, and intermolecular cyclization of imines. This study presents an important step toward understanding the formation of light-absorbing OA (brown carbon) in the atmosphere.


Assuntos
Aerossóis/análise , Compostos Orgânicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Ultravioleta
8.
Phys Chem Chem Phys ; 11(26): 5392-9, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19551207

RESUMO

300 nm photolysis yields of Fe(2+) from potassium ferrioxalate and of OH from nitrate ion have been measured in aqueous aerosols, the yield from ferrioxalate in a bulk solution being used to measure the light intensity. Mie theory was used to calculate effective cross-sections for absorption and scattering of light by the aerosol droplets. Yields of OH from nitrate ion have been measured with benzoic acid and carbon monoxide radical scavengers. The photolysis yield of Fe(2+) from ferrioxalate was found to be enhanced in the aerosol by a factor of 48 +/- 17. This enhancement is believed to be real, and is attributed to surfactant behaviour that results in the presence of a high concentration of ferrioxalate in a region of high light intensity near the droplet surface. The experiments with benzoic acid indicate that the yield of OH from nitrate in aerosol droplets is not significantly different from the yield in bulk solution. The CO experiments appear to indicate that the total OH production in the aerosol is enhanced over that in bulk solution by a factor of 10 +/- 3, but this number is not considered reliable.


Assuntos
Aerossóis/química , Radical Hidroxila/química , Ferro/química , Nitratos/química , Oxalatos/química , Água/química , Íons/análise , Íons/química , Ferro/análise , Estrutura Molecular , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA